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M E L T I N G  O F  A S O L I D  W I T H  A C C O U N T  F O R  T H E  

C H A N G E  I N  D E N S I T Y  

P. N. Vabishchevich UDC 534.24 

The two-dimensional problem of the melting of a solid with account for the jump in the density in the phase 
transition is solved numerically in the stationary formulation. 

We consider the problem of the melting of a solid with a rectangular cross section. Melting occurs under 

the effect of the heat fluxes from the boundary. Problems involving phase transitions are considered in various 

formulations in a number of works [1-3 ]. It is usually assumed that the density is continuous in the phase transition, 

otherwise the problems of describing the processes of heat and mass transfer become substantially more involved 

[4 ]. In the present work we will account for the change in density in the transition from the solid state to the liquid 

one with consideration of the stationary thermal state within the Stefan approximation. The situation with a higher 

density for the melt, which is characteristic for a wide range of materials, is considered. This situation is most 
typical for the melting of porous media. 

We consider the stationary thermal state of the solid being melted, with the initial cross section given by 

the expression 

f ] = { x l x = ( x l ,  x2), O < x a < l a ,  a = l ,  2 } .  

The left boundary will be considered to be maintained at a constant temperature that is higher than the temperature 

of the phase transition. The temperature at the right boundary is also constant but in this case it is lower than the 

temperature of the phase transition. The upper and lower boundaries are considered to be heat-insulated. 

The solid melts in the vicinity of a hot wall, and with account for the higher density of the liquid phase, 

the melt takes only a portion of the freed region. The density of the melt is higher than that of the porous medium, 

and therefore the melt gathers in the lower portion of the region in the course of melting (the effect of gravity). 

Therefore, the processes of heat transfer should be considered in three phases: solid, liquid, and gaseous (the air). 

The stationary thermal state is described by the heat conduction equation as follows: 

~ k ( x ,  u) = 0 ,  (1) 
a = l  

where u is the temperature, k is the heat conduction coefficient. We restrict ourselves to the case where the heat 

conduction coefficient is constant within the solid, liquid, and gaseous phases. The lower and upper boundaries are 

heat-insulated, and therefore 

Ou 
- 0 ,  x 2 = 0 ,  l 2, 0 < x  I < l  I .  (2) 

Ox 2 

At the right and left boundaries we have 

U = U  l , x t = 0 ,  0 < x  2 < l  2, (3) 

U = U r ,  X 1 = l 1 , 0 < X 2 < / 2 ,  

with u l > u*, u r < u*, where u* is the phase transition temperature. 

(4) 
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TABLE 1. Dependence of the Melt Height on the Ratio of Densities 

H 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

x 0.29 0.49 0.63 0.72 0.76 0.82 0.85 0.88 0.92 
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Fig. 1 

Fig. 2 

Within the Stefan approximation employed the phase transition boundary S is defined as follows: 

At the boundaries of the phases the usual conditions of ideal contact are assumed: the temperature and the heat 

fluxes are continuous. 

The separation of the region outside the solid is modeled as follows. Let the initial region of computations 

Q be divided into two subregions Q+ (where u > u*) and f~- (where u < u*, which corresponds to the region taken 

by the melt, and the air). Let H be the level of the melt, and then the two subregions within Q+ can be separated: 

Q+ = ~rn U f~a, 

Qm={X [ xEQ + x2<H } 
} , x 2 > - H  , 

i.e., f~m is the region taken by the melt, and f~a is correspondingly taken by the air. 
We denote the ratio of the densities of the solid and the melt by ~. Then, neglecting the density of the air, 

we obtain 

~ = meas (Qm)/meas (•+),  (6) 

where meas (f~) is the area of the region fL This relationship can be considered to be a condition for the 

determination of the melt height/-/. Within each of the media the thermophysical parameters are different, and 

therefore 

t - 
k o , x E  Q , 

k ( x ,  u) = kin,  x e Q m ,  (7) 

k a , x E Qa" 
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Equation (1) with conditions (2)-(6) describes completely the temperature fields in melting of the solid, 

which initially occupied the region f2. 

We formulate the problem in dimensionless variables. For the dimensionless variables the same notation 

is used as for the dimensional one. We put the variables in dimensionless form on ll and the parameters of the 

solid state, and we define the dimensionless temperature by (u  - u * ) / ( u l  - ur). In the dimensionless variables 

equation (1) and boundary and initial conditions (2), (5) remain the same, whereas (3) and (4) give 

u = r / ,  x 1 = 0 ,  0 < x  2 < l  2, (8) 

u = r / -  1, x 1 = 1 ,  0 < x  2 < l  2. (9) 

The problem posed is characterized by the parameter 12 and the corresponding (relative) thermophysical parameters 

for the melt and the air. 

Our main concern will be with problems with a predetermined level of the melt H. In this case the melt 

density is calculated in accordance with condition (6). Difference methods [5 ] are used for the numerical solution 

of problem (2), (5), (7)-(9). To refine the phase boundaries the simplest iteration process of successive refinement 
[6 ] of the phase transition boundary is used. Elliptic grid problems are solved by an iterative alternate-triangle 

method of approximate factorization, i.e., by the method of conjugate gradients [7, 8 ]. 

As the main version, the problem was considered with krn = 1, ka = 0.05, 12 = 1, and ~ = 0.5. The dependence 
of the melt level H on x for the given version is presented in Table 1. Isotherms for the case when H = 0.5 are 
presented in Fig. 1, and the analogous data for the problem with H = 0.7 are shown in Fig. 2. The calculations 

were performed on a uniform rectangular grid with the dimensions 101 • The roles of the thermophysical 

parameters (heat capacity coefficients k m and ka) and the geometry (the parameter 12) were studied. The problem 
was considered also under conditions of more general boundary thermal regimes than those given by (2)-(4). 
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